The Rationale for Relational
<table>
<thead>
<tr>
<th>Table of contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of DB models</td>
</tr>
<tr>
<td>Relational vs SQL vs NoSQL vs modern marketing</td>
</tr>
<tr>
<td>Why relational still matters</td>
</tr>
<tr>
<td>Further reading</td>
</tr>
<tr>
<td>OMG – Chocolate Fish!!!!</td>
</tr>
</tbody>
</table>
Hierarchical databases

“A hierarchical database model is a data model in which the data is organized into a tree-like structure. The data is stored as records which are connected to one another through links."

“The hierarchical structure is used primarily today for storing geographic information and file systems.”

Source: https://en.wikipedia.org/wiki/Hierarchical_database_model
Network databases

“Its distinguishing feature is that the schema, viewed as a graph in which object types are nodes and relationship types are arcs, is not restricted to being a hierarchy or lattice.”

“Until the early 1980s the performance benefits of the low-level navigational interfaces offered by hierarchical and network databases were persuasive for many large-scale applications, but as hardware became faster, the extra productivity and flexibility of the relational model led to the gradual obsolescence of the network model in corporate enterprise usage.”

Source: https://en.wikipedia.org/wiki/Network_model
Relational algebra and model

Relational algebra

• Set theory (union, intersect, minus…)
• Joins (Cartesian, natural, semi, outer, anti…)
• Aggregation

Source: https://en.wikipedia.org/wiki/Relational_algebra

Relational model

“The purpose of the relational model is to provide a **declarative method** for specifying data and queries: users directly state what information the database contains and what information they want from it, and **let the database management system software take care** of describing data structures for storing the data and retrieval procedures for answering queries.”

Key formal modelling concepts: normal forms (e.g. 3NF), data integrity (PK constraints, FK constraints…)

Source: https://en.wikipedia.org/wiki/Relational_model
BORING!!!
WHY SHOULD I CARE?
WHERE’S THE CODEZ?
The 2 Golden Rules of Building Good Software

1. Don’t Screw Up The Experience

2. Don’t Screw up The Data
Quiz question:

What’s wrong with hierarchical data models?
Quiz question:

Is there such a thing as a “schema-less database?”
NoSQL / Not Only SQL / Some QL data stores

<table>
<thead>
<tr>
<th>Type</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key-Value Cache</td>
<td>Apache Ignite, Coherence, eXtreme Scale, Hazelcast, Infinispan, JBoss Cache, Memcached, Repcached, Velocity</td>
</tr>
<tr>
<td>Key-Value Store</td>
<td>ArangoDB, Flare, Keyspace, RAMCloud, SchemaFree, Aerospike, quasardb</td>
</tr>
<tr>
<td>Key-Value Store (Eventually-Consistent)</td>
<td>DovetailDB, Oracle NoSQL Database, Dynamo, Riak, Dynomite, Voldemort, SubRecord</td>
</tr>
<tr>
<td>Key-Value Store (Ordered)</td>
<td>Actord, FoundationDB, InfinityDB, Lightcloud, LMDB, Luxio, MemcacheDB, NMDB, TokyoTyrant</td>
</tr>
<tr>
<td>Data-Structures Server</td>
<td>Redis</td>
</tr>
<tr>
<td>Tuple Store</td>
<td>Apache River, Coord, GigaSpaces</td>
</tr>
<tr>
<td>Object Database</td>
<td>DB4O, Objectivity/DB, Perst, Shoal, ZopeDB</td>
</tr>
<tr>
<td>Document Store</td>
<td>ArangoDB, BaseX, Clusterpoint, Couchbase, CouchDB, DocumentDB, IBM Domino, MarkLogic, MongoDB, Qizx, RethinkDB</td>
</tr>
<tr>
<td>Wide Column Store</td>
<td>Amazon DynamoDB, Bigtable, Cassandra, Druid, HBase, Hypertable, KAI, KDI, OpenNeptune, Qbase</td>
</tr>
</tbody>
</table>

Source: https://en.wikipedia.org/wiki/NoSQL
SQL vs NoSQL

A history of databases in No-tation

1970: NoSQL = We have no SQL
1980: NoSQL = Know SQL
2000: NoSQL = No SQL!
2005: NoSQL = Not only SQL
2013: NoSQL = No, SQL!

(R)DB(MS)

Credit: Mark Madsen
Building a NoSQL horse

https://toggl.com/blog/build-horse-programming/
Quiz question:

A document store relates to which DB model?
Quiz question:

A graph DB relates to which DB model?
The 2 Big + 1 Not-so-big Misconceptions:

1. Relational = traditional row-based DB

2. Relational = not scalable or highly available

3. SQL = Relational
Not all relational databases are created equal
Typical claim #1

Flexible schemas = good
Rigid schemas = bad
Typical claim #2

SQL/relational DBs cannot be clustered
Typical claim #3

SQL/Relational databases can’t do efficient graph queries
NewSQL kids on the block

DO YOUR DUE DILIGENCE!
Key Benefits of Relational DBs

1. ACID
2. Abstraction
3. Query Optimization
4. Portability
Further reading

When not to use NoSQL

Deeper dive into isolation models, CAP and 25 questions when choosing a DB

https://medium.com/@andrew.gregovic/think-twice-before-dropping-acid-and-throw-your-cap-away-dbe0d6171dc0
GREAT INDIAN DEVELOPER SUMMIT 2019

Conference: April 23-26, Bangalore

Register early and get the best discounts!

www.developersummit.com
@greatindiandev
bit.ly/gidslinkedin
facebook.com/gids19
bit.ly/saltmarchyoutube
flickr.com/photos/saltmarch/