

Architecting Scalable Frontends
using schema-based UIs

By: Deepak Kumar & Tarun Singh

Intro

Deepak

About Plivo
CPaaS that provides REST APIs & XMLs to facilitate Calls and Messages

• Facilitates building applications like Call Centers, Audio Conferencing solutions,
Multi-Channel Marketing solutions

• Place & receive calls, Send & receive SMS, manage complex call & message flows
using your custom backend application

Agenda - Problems faced & our approach
to solve them

Problem #1
Simplify building Communication Apps

Build an extensible UI to support the solution to problem #1

The API way (1/3)

User

Buys a
number

+1 800 675 4321
Attaches web
application to

number

+1 800 675 4321 ->
https://yoursite.com/speak

The API way (2/3)

@app.route('/speak/',
methods=['GET','POST'])

def speak_xml():

 body = "Hello, you just
received your first call"

 r = plivoxml.Response()

 r.addSpeak(body)

 return Response(str(r),
mimetype='text/xml')

Incoming call to
number

+1 800 675 4321

Plivo Server

Application Invoked

Speak Instruction
returned https://yoursite.com

The API way (3/3)

Plivo Server https://yoursite.com

Request 1

Instruction 1

Request 2

Instruction 2

Incoming
call

Why is it complex the current way?

The API & XML way

Our approach to the new way

Plivo High Level Objects (PHLO)

Simple & Intuitive Workflow Builder

• Less docs to go through
• Faster Iterations

Hosted Communications Backend

• No code to maintain
• No infra to manage
• No deployments

PHLO: Intuitive Workflow Builder

Abstracted Components

• Wrap API functionality into simple blocks
• Easy-to-understand docs

Drag, drop, save & get rolling

• Easy updates to workflow
• Get changes live in an instant

PHLO: Architecture of Hosted
Communications Backend

Execution
Service

Configuration
Service

PHLO
Designer

Common Library

User

Plivo server

Incoming
call

• Validate node definitions
• Validate & Save workflow

Definitions & Validation logic of the
nodes

• Validate & run the workflow
• Execute nodes in the workflow

Drag-n-drop interface

Simplify building Communication Apps

Build an extensible UI to support the solution to problem #1

Problem #1

Problem #2

Building the PHLO designer
PHLO designer is an Single Page Application built on Vuejs

Canvas
Workspace to define the PHLO
JsPlumb toolkit for drag-n-drop

Components
System definitions

Component Config
Define component parameters

Approaches to build Component Config

- Template Rendering: Get the complete UI (HTML, CSS,
js) from the backend and render the Component Config

- Schema-based UIs: Define a schema language. Get the
components as a schema. Generate the Component Config
using the Schema

Comparison of Approaches

** Additional Benefit of Schema-based UIs: PHLO will have the
potential be a platform for users to easily define custom components

Approach Code Clarity:
Separation of concerns

Flexibility &
Extendability

Backend dependency
for deployments

Code
Redundancy

Schema-based UIs Yes Yes No No

Template
Rendering

No No Yes Yes

How did we go about it?

Considerations for the Schema Language

- Fields
○ Standard - text, checkbox, number, textarea
○ Custom - prompt, settings

- Labels
- Sections
- Validations

○ Standard: required, numeric, min:7
○ Custom: Phone number, Endpoint

PHLO Schema Language Implementation

We have components defined for each type property received in schema.

Schema received from backend for a component.

 <Component :is=”schema.type” :data=”schema” />

{

 data: { allowed_inputs: [“#”] },

 key: “allowed_inputs”,

 label: “Allowed Inputs”,

 type: “allowed_inputs”,

 validation: “”

}

Standard Field - Text input

{
 "data": {
 "from": ""
 },
 "key": "from",
 "label": "FROM",
 "type": "text"
 "validation": "required|min:7"
}

Custom Field - Allowed Inputs

{

 data: {allowed_inputs:[“#”] },

 key: “allowed_inputs”,

 label: “Allowed Inputs”,

 type: “allowed_inputs”,

 validation: “”

}

{

 "model": [{

 "data": {

 "name": ‘HTTP Request_2'

 },

 "label": "Name",

 "type": "text",

 "validation": "required"

 },

 {

 "data": {

 "http request": {...}

 },

 "key": "http_request",

 "label": "",

 "type": "http_request",

 "validation": "required"

 }]

}

Schema Structure

DEMO

Workflow

- Send SMS to Plivo Number to invoke the
PHLO

- A SMS is sent back to the sender

- Message is posted to a slack channel

PHLO on the run

Send an SMS to this number:

Wrap up

● PHLO is a simple interface to abstract complex APIs and speed up application
development

○ Schema-based approach to support an extensible UI
○ Configuration part

■ Defines the API: URL, Payloads, Validation

■ Scalability not required

○ Execution part

■ Runs the API: Validation, Execution

■ Designed for Scalability

Thanks
Q&A

	Blank Page
	Blank Page

